
Variational solution for a cracked mosaic model of woven
fabric composites

Xin-Lin Gao a,*, Shankar Mall b

a Department of Aeronautics and Astronautics (AFIT/ENY), Air Force Institute of Technology, 2950 P Street, Wright-Patterson Air

Force Base, OH 45433-7765, USA
b Materials and Manufacturing Directorate (AFRL/MLLN), Air Force Research Laboratory, 2230 Tenth Street, Wright-Patterson Air

Force Base, OH 45433-7817, USA

Received 18 July 1999; in revised form 9 February 2000

Abstract

A variational solution for a cracked mosaic laminate model of woven fabric composites is presented using the

principle of minimum complementary energy. The solution is derived for the woven laminate in either the plane strain

or the plane stress state, with the warp/®ll yarn materials being either orthotropic or transversely isotropic, unlike other

existing solutions in the literature of laminate elasticity. The stress components are given in closed-form expressions in

terms of a perturbation function, which is governed by two (uncoupled) fourth-order inhomogeneous ordinary dif-

ferential equations (i.e., Euler±Lagrange equations) when the thermal e�ects are included. All possible expressions of

this perturbation function are obtained in closed forms. YoungÕs modulus of the cracked laminate is calculated using

the determined minimum complementary energy. The present closed-form solution can account for di�erent yarn

materials, applied loads (crack densities), geometrical dimensions, or their combinations. To demonstrate the solution,

a total of 60 sample cases are analyzed using three di�erent composite systems (i.e., glass ®ber/epoxy, graphite ®ber/

epoxy and ceramic ®ber/ceramic) and ten di�erent crack densities. The obtained numerical results are also compared to

two existing elasticity solutions for cross-ply laminates. Ó 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Woven fabric composites; Mosaic model; Variational solution; Principle of minimum complementary energy; Cross-ply

laminates; Theory of elasticity; Damage modeling

1. Introduction

Unidirectional ®ber-reinforced composites have been extensively studied and have found widespread
structural applications in the last three decades. The knowledge of fabric-reinforced woven (textile) com-
posites, however, is still very limited. Predictions and/or measurements of thermo-elastic properties (in-
cluding YoungÕs moduli, PoissonÕs ratios and thermal expansion coe�cients) of various woven composites
have been the objectives of most studies in this ®eld. A fairly comprehensive review of the relevant works
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published before May 1997 was provided by Tan et al. (1997). More recent advances in predicting the
mechanical properties of planar woven composites can be found in Gao and Mall (2000) and references
cited therein. On the other hand, very few studies have been reported on modeling of damaged/cracked
woven composites, and, as a result, the failure mechanisms of such composites are still not well understood.

Because of their highly complex microstructures, woven composites are very di�cult to characterize even
experimentally (Roy, 1996, 1998). This necessitates approximations/simpli®cations of various kinds in their
modeling. One host of approximate analyses is based on the recognition that planar woven laminates
resemble cross-ply laminates in certain ways. This resemblance enables one to make pro®table use of the
procedures/results available for cross-ply laminates in studying the behavior of woven laminates. In fact,
the mosaic model (Chou and Ishikawa, 1989), one of the earliest analytical models of planar woven
composites, regarded the woven composite as an assemblage of asymmetric cross-ply laminate pieces. More
recently, special cross-ply laminates were constructed and used as ``model laminates'' to experimentally
study the failure mechanisms of woven composites (Roy, 1996, 1998). Birman and Byrd (1999) also used
a cross-ply laminate model to simulate the behavior of a cracked plain-weave ceramic matrix composite.
However, there appears to be a lack of analyses based on three-dimensional elasticity theory for cracked
woven composites even when using simpli®ed cross-ply laminate models.

The objective of the present study is to provide an analytical solution for estimating stress distributions
in and predicting YoungÕs modulus of a cracked mosaic model using the theory of elasticity. The model
laminate, which is of cross-ply type, contains four plies (two woven layers) and has the out-of-phase
stacking con®guration. Both the warp (0° ply) and ®ll (90° ply) yarns are regarded as orthotropic materials,
with transversely isotropic materials being included as a special case. In Section 2, a statically equivalent
stress ®eld in terms of an unknown (perturbation) function is constructed, which satis®es all equilibrium
equations and traction boundary conditions (including the traction continuity conditions on the interfaces).
In this study, the stress components in the thickness direction of the laminate are included, unlike similar
studies based on the classical laminate theory. The variational analysis based on the principle of mini-
mum complementary energy is carried out in Section 3 to derive the governing (Euler±Lagrange) equa-
tions, which consist of two inhomogeneous fourth-order ordinary di�erential equations (one for each
length segment of the repeating unit). These equations, together with the boundary conditions, de®ne the
boundary-value problem to solve for the perturbation function introduced in Section 2. The thermal e�ects
due to the temperature di�erence are included in this formulation. Section 4 is devoted to the determination
of the perturbation function, the stress distributions and YoungÕs modulus. Numerical results of sample
cases are given in Section 5. A summary is provided in Section 6 together with discussions on the as-
sumptions/limitations of the new model.

2. Construction of a statically equivalent stress ®eld

Recent experimental studies on planar woven composites under uniaxial tensile loading have shown that
the cracking of transverse yarns is the ®rst observable type of damage and other types of damage, including
interface debonding and longitudinal yarn cracking, occur only at higher strains in woven composite
systems including SiC/SiC (Morvan and Baste, 1998), graphite/epoxy (Roy, 1998) and carbon/polyimide
(Gao et al., 1999). Hence, as a ®rst step toward modeling of the damaged woven composites using three-
dimensional elasticity theory, a mosaic laminate model with cracked transverse (®ll) yarns is adopted in this
study. The undamaged mosaic model for predicting mechanical properties of woven composites was ®rst
developed by Ishikawa and Chou (Chou and Ishikawa, 1989) using the classical laminate theory.

Consider a four-ply mosaic laminate with the out-of-phase stacking con®guration, as shown in Fig. 1.
Based on the experimental observations of Roy (1998) and Gao et al. (1999), it is assumed that the cracks

in transverse yarns are of the through-thickness type and are, as a ®rst approximation, uniformly located in
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the middle of each transverse yarn at the initial stage of damage development under consideration. In
addition, we assume that the laminate is in the plane strain or the plane stress state in the z-direction and
that the warp and ®ll yarns are identical, orthotropic (or transversely isotropic) materials. Then, from
symmetry and periodicity, only the repeating unit illustrated in Fig. 2 needs to be analyzed. It has the length
L, height h and width 1.

Clearly, the boundary conditions for the repeating unit shown in Fig. 2 include the traction-free con-
ditions on the top surface:

ryy � rxy � 0 on y � h
2
; ÿ L

2
6 x6 L

2
; �1a; b�

the symmetry condition in the middle plane:

rxy � 0 on y � ÿ h
2
; ÿ L

2
6 x6 L

2
; �2�

the traction-free conditions on the crack surfaces:

rxx � ryx � 0 on x � ÿ L
2
; 06 y6 h

2
and x � L

2
; ÿ h

2
6 y6 0; �3a; b�

the traction continuity conditions on the interface y � 0:

rw
yy � rf

yy ; rw
xy � rf

xy on y � 0; ÿ L
2
6 x6 L

2
; �4a; b�

the traction continuity conditions on the interface x � 0:

L

2h

fill yarn (90-degree ply) warp yarn (0-degree ply)

2Nx
2Nx

cracked surfaces cracked surfaces

Fig. 1. Mosaic laminate model with cracked transverse (®ll) yarns.
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Fig. 2. Repeating unit.
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rw
xx � rf

xx; rw
yx � rf

yx on x � 0; ÿ h
2
6 y6 h

2
: �5a; b�

In addition, the global equilibrium condition is

Nx �
Z 0

ÿh=2

rw
xx dy �

Z h
2

0

rf
xx dy

�
ÿ L

2
6 x6 0

�
�
Z 0

ÿh=2

rf
xx dy �

Z h
2

0

rw
xx dy 0

�
6 x6 L

2

�
:

�6a; b�

In Eqs. (4a,b)±(6a,b) and in the sequel, the superscripts w and f denote warp (0° ply) and ®ll (90° ply) yarns,
respectively. Clearly, the elasticity solution that exactly satis®es the governing ®eld equations and the
traction boundary conditions listed above can hardly be obtained analytically. Hence, the principle of
minimum complementary energy will be applied to derive an approximate analytical solution here, which
allows for certain assumptions on stress distributions. That is, a statically equivalent stress ®eld which
satis®es the equilibrium equations and the traction boundary conditions may be constructed to approxi-
mate the real stress ®eld that has to satisfy the compatibility equations additionally (Gao and Rowlands,
2000). A general theory for laminate stress analysis was developed by Pagano (1978) using ReissnerÕs
variational theorem, which is equivalent to the minimum complementary energy principle when a statically
equivalent stress ®eld is invoked.

Along the line of HashinÕs (1985) analysis for cracked cross-ply laminates, we assume that for the present
mosaic model, the normal stress component in the longitudinal (loading) direction is of the form:

rw
xx � rw

xx0 � u�x�; rf
xx � rf

xx0 � w�x� 8x 2
�
ÿ L

2
;
L
2

�
; �7a; b�

where u(x), w(x) are the perturbations due to the formation of cracks, and

rw
xx0 �

2E1

E1 � E2

Nx

h
; rf

xx0 �
2E2

E1 � E2

Nx

h
�8a; b�

are the longitudinal normal stress components in the uncracked laminate under tensile load Nx (force/unit
length). Here, E1 and E2 are YoungÕs moduli of the yarn material along its ®rst (x-axis/z-axis for warp/®ll
yarns in Fig. 2) and second (z-axis/x-axis for warp/®ll yarns in Fig. 2) principal material axes, respectively.

Using Eqs. (7a,b) in Eqs. (6a,b) gives

w�x� � ÿu�x� 8x 2
�
ÿ L

2
;
L
2

�
; �9�

where use has been made of the relation

rw
xx0

ÿ � rf
xx0

� h
2
� Nx: �10�

Note that Eqs. (8a,b) and (10) are direct results of the rule of mixtures and the force balance. Eq. (9) shows
that there is only one independent perturbation function. Notice that for plane strain or plane stress de-
formations of orthotropic (or transversely isotropic) materials, the three equilibrium equations reduce to
(Gao, 2000)

orxx

ox
� orxy

oy
� 0;

orxy

ox
� oryy

oy
� 0: �11a; b�

Using Eq. (7a) in Eqs. (11a,b) yields
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rw
xy � ÿu0�x�y � f �x�

rw
yy � 1

2
u00�x�y2 ÿ f 0�x�y � g�x�

(
8x 2

�
ÿ L

2
; 0

�
; y 2

�
ÿ h

2
; 0

�
and x 2 0;

L
2

� �
; y 2 0;

h
2

� �
;

�12a; b�
where f(x) and g(x) are two yet-unknown functions. Similarly, substituting Eq. (7b) into Eqs. (11a,b) gives

rf
xy � ÿw0�x�y � F �x�

rf
yy � 1

2
w00�x�y2 ÿ F 0�x�y � G�x�

(
8x 2

�
ÿ L

2
; 0

�
; y 2 0;

h
2

� �
and x 2 0;

L
2

� �
; y 2

�
ÿ h

2
; 0

�
;

�13a; b�
where F(x) and G(x) are two additional unknown functions. Next, we enforce the boundary conditions to
determine the four unknown functions.

Using Eq. (12a) in Eq. (1b) gives

f �x� � h
2

u0�x� 8x 2 0;
L
2

� �
; �14�

and Eq. (13a) in Eq. (1b) yields

F �x� � h
2

w0�x� 8x 2
�
ÿ L

2
; 0

�
: �15�

Inserting Eqs. (12b) and (14) into Eq. (1a) leads to

g�x� � h2

8
u00�x� 8x 2 0;

L
2

� �
; �16�

and Eqs. (13b) and (15) into Eq. (1a) results in

G�x� � h2

8
w00�x� 8x 2

�
ÿ L

2
; 0

�
: �17�

Similarly, using Eq. (12a) in Eq. (2) gives

f �x� � ÿ h
2

u0�x� 8x 2
�
ÿ L

2
; 0

�
; �18�

and Eq. (13a) in Eq. (2) yields

F �x� � ÿ h
2

w0�x� 8x 2 0;
L
2

� �
: �19�

Inserting Eqs. (13b), (15), (17), (18) and (12b) into Eq. (4a) leads to

g�x� � h2

8
w00�x� 8x 2

�
ÿ L

2
; 0

�
; �20�

and Eqs. (12b), (14), (16), (19) and (13b) into Eq. (4a) results in

G�x� � h2

8
u00�x� 8x 2 0;

L
2

� �
: �21�

Substituting Eqs. (14)±(21) into Eqs. (12a,b) and (13a,b) then gives
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rw
xx � rw

xx0 � u�x�;
rw

xy � u0�x��h
2
ÿ y�;

rw
yy � 1

2
u00�x��y ÿ h

2
�2;

8<: x 2 0;
L
2

� �
; y 2 0;

h
2

� �
; �22a±c�

rw
xx � rw

xx0 � u�x�;
rw

xy � ÿu0�x��y � h
2
�;

rw
yy � 1

2
u00�x���y � h

2
�2 ÿ h2

2
�;

8<: x 2
�
ÿ L

2
; 0

�
; y 2

�
ÿ h

2
; 0

�
; �23a±c�

rf
xx � rf

xx0 ÿ u�x�;
rf

xy � ÿu0�x��h
2
ÿ y�;

rf
yy � ÿ 1

2
u00�x��y ÿ h

2
�2;

8<: x 2
�
ÿ L

2
; 0

�
; y 2 0;

h
2

� �
; �24a±c�

rf
xx � rf

xx0 ÿ u�x�;
rf

xy � u0�x��y � h
2
�;

rf
yy � ÿ 1

2
u00�x� �y � h

2
�2 ÿ h2

2

h i
;

8><>: x 2 0;
L
2

� �
; y 2

�
ÿ h

2
; 0

�
; �25a±c�

where use has also been made of Eqs. (7a,b) and (9). Inserting Eqs. (24a) and (25a) into Eq. (3a) leads to

u

�
ÿ L

2

�
� u

L
2

� �
� rf

xx0; �26a; b�

and Eqs. (24b) and (25b) into Eq. (3b) results in

u0
�
ÿ L

2

�
� u0

L
2

� �
� 0: �27a; b�

Eq. (4b) is identically satis®ed by Eqs. (22b) and (25b) for all x 2 �0; L=2�, and by Eqs. (23b) and (24b) for all
x 2 �ÿL=2; 0�. Finally, using Eqs. (22a) and (24a) in Eq. (5a) leads to

u�0� � 1
2

rf
xx0

ÿ ÿ rw
xx0

�
; �28�

and Eqs. (22b) and (24b) in Eq. (5b) results in

u0�0� � 0: �29�
Eq. (28) is also a consequence of using Eqs. (23a) and (25a) in Eq. (5a), and Eq. (29) a consequence of using
Eqs. (23b) and (25b) in Eq. (5b).

Therefore, we have constructed a statically equivalent stress ®eld given by Eqs. (22a±c)±(25a±c) in terms
of the unknown perturbation function u(x) that must satisfy Eqs. (26a,b)±(29). Evidently, there exists a
large class of such functions which can identically meet the conditions given by Eqs. (26a,b)±(29). Next, we
will use the minimum complementary energy principle to determine the right (optimal) one.

3. Variational analysis

In the preceding section, we have constructed a family of statically equivalent stress ®elds in terms of the
unknown function u(x). According to the principle of minimum complementary energy (see, e.g., Washizu,
1982), among all statically equivalent stress ®elds, the one that makes the total complementary energy Pc,
an absolute (global) minimum, is the actual stress ®eld which also satis®es compatibility. Hence, we will
apply this principle to ®nd the right u(x).
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Note that for any elastic solid,

Pc�rij� �
Z

m
Wc�rij�dV ÿ

Z
Su

Tiu�i dS; �30�

where Wc is the complementary energy density, Ti is the ith component of the traction vector, u�i is the ith
component of the prescribed displacement vector on Su, and V, Su denote, respectively, the volume and the
displacement-prescribed surface part of the elastic solid. For plane deformations with e31 � e32 � e33 � 0
(plane strain) or r31 � r32 � r33 � 0 (plane stress),

Wc�rij� � 1
2
�r11e11�rij� � 2r12e12�rij� � r22e22�rij��: �31�

Furthermore, if the material is orthotropic (or transversely isotropic), then

e11

e22

2e12

8<:
9=; � b11 b12 0

b12 b22 0
0 0 b66

24 35 r11

r22

r12

8<:
9=;� a1

a2

0

8<:
9=;DT ; �32�

where a1, a2 are the thermal expansion coe�cients, DT is the temperature di�erence relative to the unloaded
(stress-free) state, and bij are the reduced in-plane compliance constants given by

b11 � 1ÿ m13m31

E1

; b12 � ÿ m12 � m13m32

E1

; b22 � 1ÿ m23m32

E2

; b66 � 1

G12

�33�

for an orthotropic material in the plane strain state, or

b11 � 1

E1

; b12 � ÿ m12

E1

; b22 � 1

E2

; b66 � 1

G12

�34�

for an orthotropic material in the plane stress state, or

b11 � 1

EA

1

�
ÿ m2

AET

EA

�
; b12 � ÿ mA�1� mT�

EA

; b22 � 1ÿ m2
T

ET

; b66 � 1

GA

�35�

for a transversely isotropic material in the plane strain state, or

b11 � 1

EA

; b12 � ÿ mA

EA

; b22 � 1

ET

; b66 � 1

GA

�36�

for a transversely isotropic material in the plane stress state. In Eqs. (33) and (34), Ea�a 2 f1; 2g�;
mij�i; j 2 f1; 2; 3g� and G12 are material properties with respect to the three principal material axes, and in
Eqs. (35) and (36), the subscripts T and A stand for the transverse plane (yz-plane/xy-plane for warp/®ll
yarns in this study) and axial direction (x-axis/z-axis for warp/®ll yarns in this study), respectively.

Using Eq. (32) in Eq. (31) gives

Wc�rij� � 1
2

bxxr
2
xx

h
� byyr

2
yy � 2bxyrxxryy � bssr

2
xy � �axrxx � ayryy�DT

i
; �37�

where fx; y; zg � f1; 2; 3g and bss � 1=Gxy . Eq. (37) is applicable to both the orthotropic and transversely
isotropic materials in either the plane strain or the plane stress state. In comparison, the corresponding
expression given in Hashin (1985) (see Eqs. (2.26a,b) in his paper) is only intended for transversely isotropic
materials in the plane stress state and without thermal e�ects. (McCartney (1992) showed, using a di�erent
argument, that HashinÕs (1985) solution is for cracked cross-ply laminates with a very small width (and thus
in the plane stress state).)
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For the present case with no displacement-prescribed boundary part (i.e., Su � null), Eq. (30) becomes

Pc�rij� �
Z

m
Wc�rij�dV �

Z 0

ÿL=2

Z 0

ÿh=2

W w
c �rij�dy

" #
dx�

Z 0

ÿL=2

Z h=2

0

W f
c �rij�dy

� �
dx

�
Z L=2

0

Z 0

ÿh=2

W f
c �rij�dy

" #
dx�

Z L=2

0

Z h=2

0

W w
c �rij�dy

� �
dx: �38�

Using Eqs. (22a±c)±(25a±c) and (37) in Eq. (38) and carrying out the algebra will result in

Pc�rij� �
Z 0

ÿL=2

J1�x�dx�
Z L=2

0

J2�x�dx; �39�

where

J1�x� � h
4

bw
xx rw

xx0

�n
� u�x��2 � bf

xx rf
xx0

� ÿ u�x��2 � aw
x DT rw

xx0

� � u�x��� af
xDT rf

xx0

� ÿ u�x��o
� h3

48
bw

ss

ÿ � bf
ss

�
u0�x�� �2 ÿ h3

48
5bw

xy rw
xx0

��
� u�x��� bf

xy rf
xx0

� ÿ u�x��
� 1

2
5aw

y

�
� af

y

�
DT
�

u00�x� � h5

1280

43

3
bw

yy

�
� bf

yy

�
u00�x�� �2

;

J2�x� � h
4

bw
xx rw

xx0

�n
� u�x��2 � bf

xx rf
xx0

� ÿ u�x��2 � aw
x DT rw

xx0

� � u�x��af
xDT rf

xx0

� ÿ u�x��o
� h3

48
bw

ss

ÿ � bf
ss

�
u0�x�� �2 � h3

48
bw

xy rw
xx0

��
� u�x��� 5bf

xy rf
xx0

� ÿ u�x��
� 1

2
aw

y

�
� 5af

y

�
DT
�

u00�x� � h5

1280
bw

yy

�
� 43

3
bf

yy

�
u00�x�� �2

:

�40�

Taking the ®rst variation of Eq. (39) and using the essential boundary conditions given in Eqs. (26a,b)±(29)
will yield

dPc �
Z 0

ÿL=2

h5

640

43

3
bw

yy

��
� bf

yy

�
u�4��x� ÿ h3

24
�bw

ss

h
� bf

ss� � �5bw
xy ÿ bf

xy�
i
u00�x�

� h
2

bw
xx

ÿ � bf
xx

�
u�x� � h

4
2 bw

xxr
w
xx0

ÿ� ÿ bf
xxr

f
xx0

�� aw
x

ÿ ÿ af
x

�
DT
��

du�x�dx

�
Z L=2

0

h5

640
bw

yy

��
� 43

3
bf

yy

�
u�4��x� ÿ h3

24
�bw

ss

h
� bf

ss

�� ÿ5bf
xy ÿ bw

xy

�i
u00�x� � h

2
bw

xx

ÿ � bf
xx

�
u�x�

� h
4

2 bw
xxr

w
xx0

ÿ� ÿ bf
xxr

f
xx0

�� aw
x

ÿ ÿ af
x

�
DT
��

du�x�dx: �41�

For Pc to be the global (absolute) minimum, it is required (as a necessary condition) that

dPc�rij� � dPc�u�x�� � 0 8u�x�; x 2
�
ÿ L

2
;
L
2

�
: �42�

Using Eq. (41) in Eq. (42) and invoking the fundamental lemma of the calculus of variation will lead to

h5

640

43

3
bw

yy

�
� bf

yy

�
u�4��x� ÿ h3

24
bw

ss

ÿh � bf
ss

�� 5bw
xy

�
ÿ bf

xy

�i
u00�x�

� h
2

bw
xx

ÿ � bf
xx

�
u�x� � h

4
aw

x

ÿ ÿ af
x

�
DT � 0 8x 2

�
ÿ L

2
; 0

�
; �43a�
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h5

640
bw

yy

�
� 43

3
bf

yy

�
u�4��x� ÿ h3

24
bw

ss

ÿh � bf
ss

�� 5bf
xy

�
ÿ bw

xy

�i
u00�x�

� h
2

bw
xx

ÿ � bf
xx

�
u�x� � h

4
�aw

x ÿ af
x�DT � 0 8x 2 0;

L
2

� �
; �43b�

where use has been made of the fact that bw
xxr

w
xx0 ÿ bf

xxr
f
xx0 � 0 for each of the four sets of constitutive re-

lations listed in Eqs. (33)±(36). These are the governing (Euler±Lagrange) equations for u(x). Note that the
two fourth-order ordinary di�erential equations in Eqs. (43a) and (43b) are di�erent, as in all of the four
sets of constitutive relations considered, there are no concurrent relations bw

yy � bf
yy , bw

xy � bf
xy . This is ex-

pected, as the two segments (i.e., x 2 �ÿL=2; 0� and x 2 �0; L=2�) of the repeating unit are not symmetric
about x � 0. On the other hand, this di�ers from the case of a cracked cross-ply laminate (Hashin, 1985),
where only one fourth-order ordinary di�erential equation needs to be solved for the unknown function on
the entire interval x 2 �ÿL=2; L=2�.

Eqs. (43a) and (43b), together with the (essential) boundary conditions listed in Eqs. (26a,b)±(29), de®ne
the boundary value problem (BVP) for determining u(x), 8x 2 �ÿL=2; L=2�. This BVP will be solved in
Section 4.

4. Determination of u(x), stress distributions and Young's modulus

The unknown function u(x) will be determined for the two segments separately. To get u(x) de®ned on
x 2 �ÿL=2; 0�, one needs to solve Eq. (43a) subjected to the following boundary conditions:

u

�
ÿ L

2

�
� rf

xx0; u0
�
ÿ L

2

�
� 0; u�0� � 1

2
rf

xx0

ÿ ÿ rw
xx0

�
; u0�0� � 0; �44�

which are initially given in Eqs. (26a), (27a), (28) and (29). Evidently, a particular solution of Eq. (43a) is

up�x� � ÿ
aw

x ÿ af
x

ÿ �
DT

2 bw
xx � bf

xx

ÿ � ; �45�

which happens to be a constant for given material properties and temperature di�erence. Eq. (45) shows
that the particular solution accounts for the thermal e�ects. If the thermal term is absent (or neglected),
then Eq. (43a) will become homogeneous and up�x� � 0, as was the case in Hashin (1985).

Note that the homogeneous part of Eq. (43a) can be non-dimensionalized as

u�4��n� � pu00�n� � qu�n� � 0 8n 2
�
ÿ L

2h
; 0

�
; �46�

where n � x=h, and

p � a2

a4

; q � a0

a4

;

a4 � 1
320

43
3
bw

yy

�
� bf

yy

�
;

a2 � ÿ 1
12

bw
ss

�
� bf

ss � 5bw
xy ÿ bf

xy

�
;

a0 � bw
xx � bf

xx:

�47�

Note that a0 > 0, a4 > 0 always hold as bw
xx > 0, bw

yy > 0, bf
xx > 0 and bf

yy > 0 (Jones, 1975, p. 43) for all of
the four sets of constitutive relations listed in Eqs. (33)±(36). The four roots of the characteristic equation of
Eq. (46) are given by
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r2 � ���
q
p �ÿm�

��������������
m2 ÿ 1
p

�; m � p
2
���
q
p : �48a; b�

Depending on whether m2 ÿ 1 > 0, the four roots have the following di�erent forms:

r1 � q1=4

������������
1ÿ m

2

r 
� i

������������
1� m

2

r !
� r3; r2 � ÿq1=4

������������
1ÿ m

2

r 
ÿ i

������������
1� m

2

r !
� r4; if m2 < 1;

r1 � iq1=4 � r3; r2 � ÿiq1=4 � r4; if m � 1;

r1 � q1=4 � r3; r2 � ÿq1=4 � r4; if m � ÿ1;

r1 � i
p
2

� �1=2
������������
mÿ 1

2m

r 
ÿ

������������
m� 1

2m

r !
� r3;

r2 � i
p
2

� �1=2
������������
mÿ 1

2m

r 
�

������������
m� 1

2m

r !
� r4; if m2 > 1 and p > 0;

r1 �
�
ÿ p

2

�1=2
������������
mÿ 1

2m

r 
ÿ

������������
m� 1

2m

r !
� ÿr3;

r2 �
�
ÿ p

2

�1=2
������������
mÿ 1

2m

r 
�

������������
m� 1

2m

r !
� ÿr4; if m2 > 1 and p < 0;

�49�

where the overbar stands for the complex conjugate, and i� ()1)1=2, as usual. These expressions are the
same as those presented in Gao (2000), except for the range of m. Then, the homogeneous part of the
solution of Eq. (43a), as the general solution of Eq. (46), can be obtained as

uh�x� � k1 cosh
a
h

x
� �

cos
b
h

x
� �

� k2 cosh
a
h

x
� �

sin
b
h

x
� �

� k3 sinh
a
h

x
� �

cos
b
h

x
� �

� k4 sinh
a
h

x
� �

sin
b
h

x
� �

if m2 < 1;

uh�x� � k1 cosh
k
h

x
� �

� k2 sinh
k
h

x
� �

� k3

x
h

cosh
k
h

x
� �

� k4

x
h

sinh
k
h

x
� �

if m � ÿ1;

uh�x� � k1 cos
k
h

x
� �

� k2 sin
k
h

x
� �

� k3

x
h

cos
k
h

x
� �

� k4

x
h

sin
k
h

x
� �

if m � 1;

uh�x� � k1 cos
gÿ q

h
x

� �
� k2 sin

gÿ q
h

x
� �

� k3 cos
g� q

h
x

� �
� k4 sin

g� q
h

x
� �

if m2 > 1 and p > 0;

uh�x� � k1 cosh
fÿ c

h
x

� �
� k2 sinh

fÿ c
h

x
� �

� k3 cosh
f� c

h
x

� �
� k4 sinh

f� c
h

x
� �

if m2 > 1 and p < 0;

�50�
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where

a � q1=4

������������
1ÿ m

2

r
; b � q1=4

������������
1� m

2

r
; k � q1=4; g � p

2

� �1=2
������������
mÿ 1

2m

r
;

q � p
2

� �1=2
������������
m� 1

2m

r
; f �

�
ÿ p

2

�1=2
������������
mÿ 1

2m

r
; c �

�
ÿ p

2

�1=2
������������
m� 1

2m

r �51�

are dimensionless parameters, whose values depend solely on material properties, and k1, k2, k3 and k4 are
yet-unknown constants, which are denoted by the same symbols in all ®ve cases for brevity.

The general solution of Eq. (43a) can now be written as

u�x� � uh�x� � up�x� 8 x 2
�
ÿ L

2
; 0

�
; �52�

with uh(x) and up(x) being given in Eqs. (50) and (45), respectively. The four constants k1 ÿ k4 involved in
the solution can be determined from the four boundary conditions listed in Eq. (44).

For the case with m2 < 1 (i.e., p2 < 4q) the solution gives

u�x� � k1 cosh
a
h

x
� �

cos
b
h

x
� �

� k2 cosh
a
h

x
� �

sin
b
h

x
� ��

ÿ b
a

sinh
a
h

x
� �

cos
b
h

x
� ��

� k4 sinh
a
h

x
� �

sin
b
h

x
� �

ÿ �a
w
x ÿ af

x�DT
2�bw

xx � bf
xx�

8 x 2
�
ÿ L

2
; 0

�
; �53�

where

k1 � 1
2

rf
xx0

ÿ ÿ rw
xx0

�ÿ up;

k4 � a2
ÿ� � b2

�
rf

xx0

ÿ ÿ up

�
sinh

aL
2h

� �
sin

bL
2h

� �
ÿ ab

1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�

� sinh
aL
2h

� �� �2
(

� sin
bL
2h

� �� �2
)+,

b2 sinh
aL
2h

� �� �2
(

ÿ a2 sin
bL
2h

� �� �2
)
;

k2 �
rf

xx0 ÿ up ÿ 1
2

rf
xx0 ÿ rw

xx0

ÿ �ÿ up

� �
cosh aL

2h

ÿ �
cos bL

2h

ÿ �ÿ k4 sinh aL
2h

ÿ �
sin bL

2h

ÿ �
b
a sinh aL

2h

ÿ �
cos bL

2h

ÿ �ÿ cosh aL
2h

ÿ �
sin bL

2h

ÿ � :

�54�

For the case with m � ÿ1 (i.e., p � ÿ2q1=2 < 0), the solution gives

u�x� � k1 cosh
k
h

x
� �

� k2 sinh
k
h

x
� ��

ÿ k
x
h

cosh
k
h

x
� ��

� k4

x
h

sinh
k
h

x
� �

ÿ aw
x ÿ af

x

ÿ �
DT

2 bw
xx � bf

xx

ÿ � 8x 2
�
ÿ L

2
; 0

�
; �55�

where

k1 � 1
2

rf
xx0

ÿ ÿ rw
xx0

�ÿ up;

k4 �
k rf

xx0 ÿ up

ÿ �
kL
2h sinh kL

2h

ÿ �ÿ 1
2

rf
xx0 ÿ rw

xx0

ÿ �ÿ up

� �
sinh kL

2h

ÿ �� �2
n o

sinh kL
2h

ÿ �� �2 ÿ kL
2h

ÿ �2
;

k2 � ÿ
k 1

2
rf

xx0 ÿ rw
xx0

ÿ �ÿ up

� �
sinh kL

2h

ÿ �� k4 sinh kL
2h

ÿ �� kL
2h cosh kL

2h

ÿ �� �
k2L
2h sinh kL

2h

ÿ � :

�56�
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For the case with m � 1 (i.e., p � 2q1=2 > 0), the solution gives

u�x� � k1 cos
k
h

x
� �

� k2 sin
k
h

x
� ��

ÿ k
x
h

cos
k
h

x
� ��

� k4

x
h

sin
k
h

x
� �

ÿ aw
x ÿ af

x

ÿ �
DT

2 bw
xx � bf

xx

ÿ � 8 x 2
�
ÿ L

2
; 0

�
; �57�

where

k1 � 1
2

rf
xx0

ÿ ÿ rw
xx0

�ÿ up;

k4 �
k kL

2h rf
xx0 ÿ up

ÿ �ÿ 1
2

rf
xx0 ÿ rw

xx0

ÿ �ÿ up

� �
sin kL

2h

ÿ �� 	
sin kL

2h

ÿ �
kL
2h

ÿ �2 ÿ � sin kL
2h

ÿ ��2 ;

k2 � ÿ
k 1

2
rf

xx0 ÿ rw
xx0

ÿ �ÿ up

� �
sin kL

2h

ÿ �ÿ k4 sin kL
2h

ÿ �� kL
2h cos kL

2h

ÿ �� �
k2L
2h sin kL

2h

ÿ � :

�58�

For the case with m2 > 1 and p > 0 (i.e., p > 2q1=2 > 0), the solution gives

u�x� � 2k1 sin
g
h

x
� �

sin
q
h

x
� �

� k2 sin
gÿ q

h
x

� ��
ÿ gÿ q

g� q
sin

g� q
h

x
� ��

� 1

2
rf

xx0

ÿ ÿ rw
xx0

�
cos

g� q
h

x
� �

ÿ aw
x ÿ af

x

ÿ �
DT

2 bw
xx � bf

xx

ÿ � 1
h
ÿ cos

g� q
h

x
� �i

8 x 2
�
ÿ L

2
; 0

�
; �59�

where

k2 � ÿ rf
xx0

ÿ�� ÿ rw
xx0

�ÿ 2up

�
sin
�g� q�L

2h

� �
sin

gL
2h

� �
sin

qL
2h

� �
�
�

rf
xx0 ÿ up

ÿ 1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�
cos

�g� q�L
2h

� ��
gÿ q
g� q

sin
�gÿ q�L

2h

� ��
ÿ sin

�g� q�L
2h

� ���
gÿ q
g� q

sin2 �gÿ q�L
2h

� ����
� sin2 �g� q�L

2h

� �
� 4sin2 gL

2h

� �
sin2 qL

2h

� ��

ÿ 1

"
� gÿ q

g� q

� �2
#

sin
�gÿ q�L

2h

� �
sin

�g� q�L
2h

� �+
;

k1 � rf
xx0

�
ÿ up ÿ

1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�
cos

�g� q�L
2h

� �
� k2 sin

�gÿ q�L
2h

� ��
ÿ gÿ q

g� q
sin

�g� q�L
2h

� ���
2sin

gL
2h

� �
sin

qL
2h

� �� ��
:

�60�

For the case with m2 > 1 and p < 0 (i.e., p < ÿ2q1=2 < 0), the solution gives

u�x� � k1 cosh
fÿ c

h
x

� ��
ÿ cosh

f� c
h

x
� ��

� k2 sinh
fÿ c

h
x

� ��
ÿ fÿ c

f� c
sinh

f� c
h

x
� ��

� 1

2
rf

xx0

ÿ ÿ rw
xx0

�
cosh

f� c
h

x
� �

ÿ aw
x ÿ af

x

ÿ �
DT

2 bw
xx � bf

xx

ÿ � 1

�
ÿ cosh

f� c
h

x
� ��

8x 2
�
ÿ L

2
; 0

�
; �61�
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where

k2 � rf
xx0

ÿ� ÿ up

� fÿ c
f� c

sinh
fÿ c� �L

2h

� ��
ÿ sinh

f� c� �L
2h

� ��
� 1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�
� sinh

�f� c�L
2h

� �
cosh

�fÿ c�L
2h

� ��
ÿ fÿ c

f� c
sinh

�fÿ c�L
2h

� �
cosh

�f� c�L
2h

� ���
2

fÿ c
f� c

1

���
ÿ cosh

�fÿ c�L
2h

� �
cosh

�f� c�L
2h

� ��
� 1

"
� fÿ c

f� c

� �2
#

sinh
�fÿ c�L

2h

� �
sinh

�f� c�L
2h

� �+
;

k1 � rf
xx0

�
ÿ up ÿ

1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�
cosh

�f� c�L
2h

� �
� k2 sinh

�fÿ c�L
2h

� ��
ÿ fÿ c

f� c
sinh

�f� c�L
2h

� ����
cosh

�fÿ c�L
2h

� ��
ÿ cosh

�f� c�L
2h

� ��
:

�62�
This completes the solution of u(x) on x 2 �ÿL=2; 0� for the ®ve di�erent cases.

To get u(x) de®ned on x 2 �0; L=2�, one needs to solve Eq. (43b) subjected to the following boundary
conditions:

u�0� � 1

2
rf

xx0

ÿ ÿ rw
xx0

�
; u0�0� � 0; u

L
2

� �
� rf

xx0; u0
L
2

� �
� 0; �63�

which are initially given in Eqs. (28), (29), (26b) and (27b). By following the same procedures used for
determining u(x) on x 2 �ÿL=2; 0�, this BVP can be solved.

For the case with m2 < 1 (i.e., p2 < 4q) the solution has the same expression as that given in Eq. (53), but
x 2 �0; L=2� and the constants k1, k2 and k4 in Eq. (53) need to be replaced by

k1 � 1
2

rf
xx0

ÿ ÿ rw
xx0

�ÿ up;

k4 � a2
ÿ� � b2

��rf
xx0 ÿ up� sinh

aL
2h

� �
sin

bL
2h

� �
ÿ ab

1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�
� sinh2 aL

2h

� ��
� sin2 bL

2h

� ����
b2 sinh

aL
2h

� �� �2
(

ÿ a2 sin
bL
2h

� �� �2
)
;

k2 �
rf

xx0 ÿ up ÿ 1
2

rf
xx0 ÿ rw

xx0

ÿ �ÿ up

� �
cosh aL

2h

ÿ �
cos bL

2h

ÿ �ÿ k4 sinh aL
2h

ÿ �
sin bL

2h

ÿ �
cosh aL

2h

ÿ �
sin bL

2h

ÿ �ÿ b
a sinh aL

2h

ÿ �
cos bL

2h

ÿ � ;

�64�

where

a � q1=4���
2
p

�����������������
1ÿ p

2
���
q
p

r
; b � q1=4���

2
p

�����������������
1� p

2
���
q
p

r
; �65a; b�

p � ÿ 80�bw
ss � bf

ss ÿ bw
xy � 5bf

xy�
3bw

yy � 43bf
yy

; q � 960�bw
xx � bf

xx�
3bw

yy � 43bf
yy

; �65c; d�

and up is the same as that given in Eq. (45).
For the case with m � ÿ1 (i.e., p � ÿ2q1=2 < 0), the solution has the same expression as that given in Eq.

(55), but x 2 �0; L=2� and the constants k1, k2 and k4 in Eq. (55) need to be replaced by
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k1 � 1
2

rf
xx0

ÿ ÿ rw
xx0

�ÿ up;

k4 �
k rf

xx0 ÿ up

ÿ �
kL
2h sinh kL

2h

ÿ �ÿ 1
2
�rf

xx0 ÿ rw
xx0� ÿ up

� �
sinh kL

2h

ÿ �� �2
n o

sinh kL
2h

ÿ �� �2 ÿ kL
2h

ÿ �2
;

k2 �
k 1

2
rf

xx0 ÿ rw
xx0

ÿ �ÿ up

� �
sinh kL

2h

ÿ �� k4 sinh kL
2h

ÿ �� kL
2h cosh kL

2h

ÿ �� �
k2L
2h sinh kL

2h

ÿ � ;

�66�

where

k � 960�bw
xx � bf

xx�
3bw

yy � 43bf
yy

" #1=4

: �67�

For the case with m � 1 (i.e., p � 2q1=2 > 0), the solution has the same expression as that given in Eq.
(57), but x 2 �0; L=2� and the constants k1, k2 and k4 in Eq. (57) need to be replaced by

k1 � 1
2

rf
xx0

ÿ ÿ rw
xx0

�ÿ up;

k4 �
k kL

2h rf
xx0 ÿ up

ÿ �ÿ 1
2

rf
xx0 ÿ rw

xx0

ÿ �ÿ up

� �
sin kL

2h

ÿ �� 	
sin kL

2h

ÿ �
kL
2h

ÿ �2 ÿ sin kL
2h

ÿ �� �2
;

k2 �
k 1

2
rf

xx0 ÿ rw
xx0

ÿ �ÿ up

� �
sin kL

2h

ÿ �ÿ k4 sin kL
2h

ÿ �� kL
2h cos kL

2h

ÿ �� �
k2L
2h sin kL

2h

ÿ � ;

�68�

where k is given by Eq. (67).
For the case with m2 > 1 and p > 0 (i.e., p > 2q1=2 > 0), the solution has the same expression as that

given in Eq. (59), but x 2 �0; L=2� and the constants k1, k2 in Eq. (59) need to be replaced by

k2 � rf
xx0

ÿ�� ÿ rw
xx0

�ÿ 2up

�
sin
�g� q�L

2h

� �
sin

gL
2h

� �
sin

qL
2h

� �
� rf

xx0

�
ÿ up ÿ

1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�
cos

�g� q�L
2h

� ��
gÿ q
g� q

sin
�gÿ q�L

2h

� ��
ÿ sin

�g� q�L
2h

� ���
gÿ q
g� q

sin2 �gÿ q�L
2h

� ����
� sin2 �g� q�L

2h

� �
� 4sin2 gL

2h

� �
sin2 qL

2h

� ��

ÿ 1

"
� gÿ q

g� q

� �2
#

sin
�gÿ q�L

2h

� �
sin
�g� q�L

2h

� �+
;

k1 � rf
xx0

�
ÿ up ÿ

1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�
cos

�g� q�L
2h

� �
ÿ k2 sin

�gÿ q�L
2h

� ��
ÿ gÿ q

g� q
sin
�g� q�L

2h

� ����
2sin

gL
2h

� �
sin

qL
2h

� �� �
;

�69�
where

g � 1
2

�����������������
p ÿ 2

���
q
pq

; q � 1
2

�����������������
p � 2

���
q
pq

;

p � ÿ
80 bw

ss � bf
ss ÿ bw

xy � 5bf
xy

� �
3bw

yy � 43bf
yy

; q � 960 bw
xx � bf

xx

ÿ �
3bw

yy � 43bf
yy

;

�70�
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and up is the same as that given in Eq. (45).
Finally, for the case with m2 > 1 and p < 0 (i.e., p < ÿ2q1=2 < 0), the solution has the same expression as

that given in Eq. (61), but x 2 �0; L=2� and the constants k1, k2 in Eq. (61) need to be replaced by

k2 � rf
xx0

ÿ� ÿ up

� fÿ c
f� c

sinh
�fÿ c�L

2h

� ��
ÿ sinh

�f� c�L
2h

� ��
� 1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�

� sinh
�f� c�L

2h

� �
cosh

�fÿ c�L
2h

� ��
ÿ fÿ c

f� c
sinh

�fÿ c�L
2h

� �
cosh

�f� c�L
2h

� ���

2
fÿ c
f� c

cosh
�fÿ c�L

2h

� �
cosh

�f� c�L
2h

� ��*,
ÿ 1

�

ÿ 1

"
� fÿ c

f� c

� �2
#

sinh
�fÿ c�L

2h

� �
sinh

�f� c�L
2h

� �+
;

k1 � rf
xx0

�
ÿ up ÿ

1

2
rf

xx0

ÿ�
ÿ rw

xx0

�ÿ up

�
cosh

�f� c�L
2h

� �
ÿ k2 sinh

�fÿ c�L
2h

� ��

ÿ fÿ c
f� c

sinh
�f� c�L

2h

� ����
cosh

�fÿ c�L
2h

� ��
ÿ cosh

�f� c�L
2h

� ��
;

�71�

where

f �
�
ÿ p

2

�1=2

���������������
1

2
ÿ

���
q
p
p

s
; c �

�
ÿ p

2

�1=2

���������������
1

2
�

���
q
p
p

s
;

p � ÿ 80�bw
ss � bf

ss ÿ bw
xy � 5bf

xy�
3bw

yy � 43bf
yy

; q � 960 bw
xx � bf

xx

ÿ �
3bw

yy � 43bf
yy

;

�72�

and up is the same as that given in Eq. (45). This completes the solution of u(x) on x 2 �0; L=2� for the ®ve
di�erent cases.

Using u(x) determined above in Eqs. (22a±c)±(25a±c) will yield the stress ®eld in the entire laminate
(repeating unit). As this stress ®eld is the one that minimizes the total complementary energy and thus is
closest to the real stress ®eld (among the family of statically equivalent stress ®elds constructed in Section
2), it follows from HashinÕs (1983) homogenization theorem that the e�ective Young modulus of the
cracked mosaic laminate (as the best lower bound of the real value) is

Eeff
x �

r2
0Lh

2P�c
; �73�

where r0 � Nx=h is the uniform stress applied in the longitudinal direction on the homogenized body, and

P�c � min
rij

Pc�rij�: �74�

Note that rearranging Eqs. (39) and (40) gives, with bw
xxr

w
xx0 ÿ bf

xxr
f
xx0 � 0,
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Pc rij

ÿ � � hL
4

bw
xx rw

xx0

ÿ �2
h

� bf
xx rf

xx0

ÿ �2 � aw
x rw

xx0

ÿ � af
xr

f
xx0

�
DT
i

� h
4

aw
x

ÿ ÿ af
x

�
DT
Z L=2

ÿL=2

u�x� dx� h
4

bw
xx

ÿ � bf
xx

� Z L=2

ÿL=2

u�x�� �2 dx

� h3

48
bw

ss

�(
� bf

ss � 5bw
xy ÿ bf

xy

�Z 0

ÿL=2

�u0�x��2dx� bw
ss

�
� bf

ss � 5bf
xy ÿ bw

xy

�Z L=2

0

�u0�x��2 dx

)

� h5

1280

43

3
bw

yy

�(
� bf

yy

�Z 0

ÿL=2

�u00�x��2 dx� bw
yy

�
� 43

3
bf

yy

�Z L=2

0

�u00�x��2 dx

)
:

�75�
Then, using u(x) given by either Eq. (53), Eq. (55), Eq. (57), Eq. (59) or Eq. (61) in Eq. (75) and carrying
out the algebra will yield P�c for each of the ®ve cases. With P�c determined, YoungÕs modulus of the
cracked mosaic laminate can readily be obtained from Eq. (73). Sample numerical results will be presented
in the next section.

5. Numerical results

To illustrate the analytical solution derived in the preceding section, some sample cases are studied in
this section, with the relevant numerical results being presented in the table and ®gure formats.

Consider three di�erent unidirectional composite systems, glass ®ber/epoxy, carbon ®ber/epoxy and
ceramic ®ber/ceramic (SiC/1723), as warp/®ll yarn materials, whose properties, as reported in Hashin
(1985), McCartney (1992) and Ji et al. (1998), are listed in Table 1. The three composites are all treated as
transversely isotropic materials.

Based on these material properties, the three fundamental parameters p, q and m can be determined
using Eqs. (35), (36), (47), (48b) and (65c,d). The calculated values of p, q and m are tabulated in Table 2.

The value of m together with the sign of p dictates the speci®c forms of u(x) to be used, as demonstrated
in Section 4. From Table 2, it follows that for both the glass/epoxy and graphite/epoxy yarns in either the
plane stress or the plane strain state u(x) given in Eqs. (61) and (62) is needed for x 2 �ÿL=2; 0� and u(x)
given in Eqs. (53) and (64) for x 2 �0; L=2�, whereas for the ceramic/ceramic yarns in either the plane stress
or the plane strain state u(x) given in Eqs. (53) and (54) should be applied for x 2 �ÿL=2; 0� and u(x) given
in Eqs. (53) and (64) for x 2 �0; L=2�. With the expressions of u(x) identi®ed, the stress components in the
cracked laminate can then be easily obtained from Eqs. (22a±c)±(25a±c).

Table 3 lists the values of YoungÕs modulus (Eeff
x ) of the damaged laminate with di�erent crack densities

(h/L). They are calculated using Eqs. (73)±(75), given material properties and the corresponding expressions

Table 1

Material properties

Property Glass/epoxy

(Hashin, 1985)

Graphite/epoxy

(Hashin, 1985)

Ceramic/ceramic

(Ji et al., 1998)

EA, GPa 41.7 208.3 140.0

ET, GPa 13.0 6.5 88.0

mA 0.30 0.255 0.20

mT 0.42 0.413 0.26

GA, GPa 3.40 1.65 44.0

GT, GPa 4.58 2.30 35.0
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of u(x) mentioned above. In these calculations, Mathematica program (of Wolfram Research, Inc.) is used
to compute the relevant parameters and to numerically evaluate the de®nite integrals involved in Eq. (75).
Also, the numbers involved in the calculations are kept to their ninth decimal place for accuracy.

Note that the values of YoungÕs modulus of the undamaged laminate given in this table (i.e., the column
with L/h�1) is obtained from the rule-of-mixtures formula: Eeff

x0 � �E1 � E2�=2 � �EA � ET�=2. The data
in Table 3 are also illustrated in Figs. 3 and 4, where they are also compared with the known results of
Hashin (1985) and McCartney (1992) for cross-ply laminates [0°/90°]s. Note that the Young modulus ratio
de®ned by r � Eeff

x =Eeff
x0 is used as the ordinate in these two ®gures.

From Table 3 and Figs. 3 and 4, the following observations can be made:
(1) The degree of reduction in YoungÕs modulus due to the formation of cracks depends on the ratio ET/

EA of yarn material. For the ceramic/ceramic yarn with the largest value of ET/EA, Eeff
x =Eeff

x0 is the largest
(i.e., the reduction degree is the least) among the three, whereas Eeff

x =Eeff
x0 is the smallest for the graphite/

epoxy yarn which has the smallest value of ET/EA. This illustrates that ceramic/ceramic woven composite
systems are the safest (among the three) to use in damage susceptible environments.

Table 2

Material parameters

Parameter Glass/epoxy Graphite/epoxy Ceramic/ceramic

Plane stress, x 2 �ÿL=2; 0�
p )11.5032 )12.4151 )7.2099

q 27.3757 21.5208 33.9876

m )1.0993 )1.3381 )0.6184

Plane stress, x 2 �0; L=2�
p )8.0965 )8.1886 )5.8087

q 27.3757 21.5208 33.9876

m )0.7737 )0.8826 )0.4982

Plane strain, x 2 �ÿL=2; 0�
p )13.4534 )14.7427 )7.4526

q 31.9313 25.5552 35.4300

m )1.1904 )1.4582 )0.6260

Plane strain, x 2 �0; L=2�
p )8.2314 )8.2845 )5.8091

q 27.6509 21.7605 34.0844

m )0.7827 )0.8880 )0.4975

Table 3

YoungÕs modulus Eeff
x in GPa

L=h Glass/epoxy Graphite/epoxy Ceramic/ceramic

Plane stress Plane strain Plane stress Plane strain Plane stress Plane strain

1 27.35 27.35 107.4 107.4 114.0 114.0

9 24.16 24.88 41.33 41.67 102.61 105.30

8 23.81 24.52 38.36 38.69 101.35 104.01

7 23.36 24.07 35.11 35.42 99.78 102.41

6 22.78 23.47 31.50 31.79 97.76 100.35

5 21.93 22.60 27.42 27.69 95.04 97.57

4 20.54 21.19 22.61 22.87 90.97 93.41

3 17.81 18.44 16.42 16.70 83.33 85.64

2 11.61 12.18 8.14 8.41 62.86 64.83

1 2.07 2.26 1.08 1.16 14.02 14.62
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(2) A larger reduction in YoungÕs modulus occurs for the mosaic laminate than for the cross-ply lam-
inates with the same crack density. This agrees with the fact that in-plane properties of planar woven
composites are weaker than those of laminated composites.

(3) The values of Eeff
x in the plane strain case are always larger than those in the plane stress case. That is,

more damages occur in the plane stress mosaic laminate than in the plane strain one under the same applied
stress. This is consistent with other damage analyses based on elasticity theory. For example, it is known in
linear elastic fracture mechanics that the plastic (damage) zone near a Mode I crack tip in the plane strain
state is smaller than that in the plane stress state, and the same is true for the plastic (damage) zone under a
concentrated normal/shear force acting on a half plane (Gao, 1999) in contact mechanics. However, the
di�erences between the two sets of values are consistently small. This implies that the conservative results
from the plane stress analyses can be adopted to represent typical problems with ®nite width. In other
words, the use of a plane stress strip model to characterize the behavior of cracked planar woven com-
posites is justi®ed.
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Fig. 3. Plane stress laminate.
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6. Summary

A variational solution based on the principle of minimum complementary energy is presented for a
cracked mosaic laminate model of woven fabric composites. The model laminate consists of two woven
layers (four plies) in an out-of-phase stacking con®guration. The solution is quite general and can ac-
commodate the laminate in either the plane strain or the plane stress state, with the warp/®ll yarn materials
being either orthotropic or transversely isotropic. This di�ers from other existing solutions in the literature
of laminate elasticity. The only assumption used in constructing the statically equivalent stress ®eld is that
the stress component in the loading direction is independent of the thickness coordinate, as was done in
Hashin (1985) and McCartney (1992) for cross-ply laminates. The stress components are derived explicitly
in terms of a perturbation function, which is governed by a fourth-order ordinary di�erential equation in
each of the two segments of the repeating unit. The two ordinary di�erential equations are homogeneous
only when the thermal e�ects are absent (neglected). All possible expressions of this perturbation function
are obtained in closed forms, which one to be used depends on three material parameters. The total
minimum complementary energy and thus YoungÕs modulus of the cracked laminate are determined using
the identi®ed expression(s) of the perturbation function directly. Mathematica program of the Wolfram
Research, Inc. is used to compute various parameters and to numerically evaluate the de®nite integrals
involved in the complementary energy expression.

Being derived in a closed form, the present solution can naturally account for di�erent yarn materials,
applied loads (crack densities), geometrical dimensions, or their combinations. To demonstrate the solu-
tion, a total of 60 sample cases are analyzed using three di�erent composite systems (i.e., glass ®ber/epoxy,
graphite ®ber/epoxy and ceramic ®ber/ceramic) and ten di�erent crack densities. The calculations are
carried out using non-dimensional quantities, with L/h being the only geometrical parameter. The obtained
numerical results are also compared to HashinÕs (1985) plane stress and McCartneyÕs (1992) plane strain
solutions for cross-ply laminates, which shows consistency among the three di�erent theoretical models. A
comparison with suitable experimental data would de®nitely enhance the present analysis. Unfortunately,
the inherent di�culty in experimentally modeling woven composites (Roy, 1996, 1998; Tan et al., 1997) has
made experimental data on mechanical properties of damaged woven composites extremely scarce. This
prevented us from ®nding comparable experimental data and including the desired comparison.

As always, the present analysis has its own limitations, which arise from the assumptions used. First of
all, the mosaic model neglects the undulations of yarns. Consequently, the newly developed model may only
be good for analyzing cracked woven composites with very small (negligible) undulation lengths. Of course,
the closed-form solutions derived here for the mosaic model, as idealized as the model is, provide bench-
marks for the validation of various numerical models/computer codes that are usually applied to numer-
ically solve problems of woven composites involving more complicated geometries and/or damage patterns.
In addition, the present mosaic model, as de®ned in Fig. 1, is a series model (Chou and Ishikawa, 1989)
with cracked transverse yarns, and, as a result, the predicted values of YoungÕs modulus of the model
laminate are expected to be larger than those of the series model, but smaller than those of the parallel
model, of the corresponding woven laminate with undulations (Naik, 1994). Finally, the assumption that
there is only one crack in the middle of each transverse yarn is another idealization. Some woven composite
systems may not exhibit the assumed damage pattern, although this assumption is based on the experi-
mental observations reported in Morvan and Baste (1998) and Gao et al. (1999) for the early stage of
damage development in the tested woven composite materials. Similar situations exist in the damage
modeling of cross-ply laminates, which are the prototypes of the mosaic model used here. It is therefore
suggested that extra caution should be exercised on damage modeling of woven composites, including the
use of the newly proposed model, which is perhaps the simplest analytical model for damaged woven
composites based on elasticity theory. It is hoped that the present idealized model will pave the way for the
development of more sophisticated models that can account for the actual geometry and/or the real damage
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pattern of a woven composite. In fact, another model including yarn undulations has been under devel-
opment as the completion of this work and will be reported elsewhere.
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